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NOTES PART V: NORMAL FORM THEOREM WITH LOGARITHMS

Let us recall from last time the second, more general version of the normal form theorem where the local

exponent ρ has multiplicitym = mρ ≥ 1 and where we considered the operator L as acting on the enlarged

function space F = xρO[z]. In fact, we can (and will) even restrict to the smaller space F = xρO[z]<m of

polynomials in z of degree < m. Normalizing the action of the operator L on this space will be sufficient

and perfectly suited to construct m solutions yi = xρ log(x)ihi(x) of Ly = 0, with 0 ≤ i < m and hi ∈ O
holomorphic. We will still have to assume that ρ is maximal with respect to Z. The case where ρ is no

longer maximal requires extra constructions and will be treated next time.

Theorem. (Normal form theorem with logarithms) Let L =
∑n
j=0 pj(x)∂

j ∈ O[∂] be an n-th order

linear differential operator with holomorphic coefficients pj in O. Let ρ ∈ C be a maximal local

exponent of L at 0 modulo Z, i.e., ρ + k is not a local exponent for any positive integer k. Let

m = mρ ≥ 1 be its multiplicity as a root of the indicial polynomial χ of L. Denote by L0 the

initial form of L at 0, and assume that L0 has shift 0. Set F = xρO[z]<m and F̂ = xρÔ[z]<m.

Denote by ∂ the extension of ∂ to O[z] defined by ∂x = 1, ∂z = x−1, and write accordingly

L =
∑n
j=0 pj∂

j ∈ O[∂] for the induced operator. There exists a linear automorphism û : F̂ → F̂
such that the linear maps on F̂ induced by L and L0 and denoted by the same letters satisfy

L ◦ û−1 = L0.

Moreover, if 0 is a regular singular point of L, then û restricts to a linear automorphism u : F → F
such that the linear maps on F induced by L and L0 satisfy

L ◦ u−1 = L0.

Remarks. (a) The automorphism û is again of the form û = IdF̂ − S ◦ T with T = L0 − L and S the

inverse of the restriction L0|Ĥ of L0 to a direct complement Ĥ of its kernel in F̂ as in the first version of

the normal form theorem. Accordingly, u has the form u = IdF − S ◦ T .

(b) We do not allow L to have coefficients depending also on the variable z, i.e., lying in O[z]. This would

correspond to differential equations whose coefficients involve powers of logarithms. It is not clear whether

this case would have interesting applications.

(c) The convergence part of the theorem requires again that 0 is a regular singularity of L. The proof is

analogous to the case without logarithms, using the same estimates.
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Before proving the theorem let us state immediately its central output about the solutions of Ly = 0:

Corollary. Let y1 = xρ, ..., ym = xρ log(x)m−1 be the solutions of the Euler equation L0y = 0. Then

u−1(y1) = u−1(xρ), ..., u−1(ym) = u−1(xρ log(x)m−1) are solutions of Ly = 0. More explicitly,

these solutions are of the form, for 1 ≤ i ≤ m,

y1(x) = xρh1(x),

y2(x) = xρ[h2(x) + h1(x) log(x)],

yi(x) = xρ[hi(x) + hi−1(x) log(x) + . . .+ h1(x) log(x)
i−1],

with h1, ..., hm formal power series in Ô, respectively, holomorphic functions in O.

Remark. The special shape of the solutions yi(x) stems from the explicit description of the normalizing

automorphism u as given above, see the proof of the theorem.

Examples. The proof of the theorem will use the three lemmata 1, 2, 3 of part III (the section on Euler

operators) describing the extensions ∂j and L of derivations and differential operators to xρO[z]. To get a

more concrete hold on these, let us consider two examples.

(1) Let E = x2∂2 − 3x∂ + 3 be an Euler operator with indicial polynomial χ(t) = (t + 1)2 and local

exponent ρ = −1 of multiplicity m = 2. Let it act on x−1O[z]<2. Then

E(xkzi) = xk[(k + 1)2zi + 2(k + 1)izi−1 + 2i(i− 1)zi−2].

We get Ker(E) = Cx−1 ⊕ Cx−1z, and Im(E) = xx−1O[z]<2 = O[z]<2.

(2) Let E = x3∂3− 4x2∂2+9x∂− 9 be an Euler operator with indicial polynomial χ(t) = (t− 1)(t− 3)2

and local exponents ρ = 3 of multiplicity m = 2 and σ = 1 of multiplicity 1. Let it act on xO[z]<2. Then

E(xkzi) = xk[(k − 1)(k − 3)2zi + (3k − 5)(k − 1)izi−1 + (6k − 14)i2zi−2 + 6i3zi−3].

The kernel is Ker(E) = Cx⊕ Cx3 ⊕ Cx3z. Determine the image Im(E)!

(3) Let finally E = x2∂2 − x∂ be with χ(t) = t(t − 2) and local exponents ρ = 2 and σ = 0, both of

multiplicity 1. Let it act on F = O + x2O = O since no logarithms are to be expected. Then

E(xk) = k(k − 2)xk

and hence Ker(E) = C⊕Cx2. The image is Im(E) = Cx+Ox3 ⊂ O, which is now strictly contained in

xF = xO. The “gap” occurs at x2, and this will cause serious problems when trying to apply the arguments

of the proof of the normal form theorem - recall that it relied heavily on the equality L0(F) = xF , and this

fails in the present example. The reason is that there is resonance between the two local exponents, say,

ρ− σ ∈ Z. We will show in part VI of the notes how to overcome this problem.

Proof. Recall from Lemma 1, part III, the formula

∂j = ∂j + (∂j)′∂z +
1
2 (∂

j)′′∂2z + . . .+ 1
`! (∂

j)(`)∂`z + . . .+ 1
j! (∂

j)(j)∂jz ,

where the derivatives (∂j)(`) are defined on O by (∂j)(`)(xt) = (tj)(`)xt−j while leaving z invariant. For

an operator L =
∑n
j=0 pj∂

j ∈ O[∂] ∈ O[∂] define accordingly its `-th derivative as

L(`) =
∑n
j=0 pj(∂

j)(`),

acting again on O while leaving z invariant. More explicitly,
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(L(`)∂`z)(x
kzi) = L(`)(xk) · ∂`z(zi) = (kj)(`)i` · xk−jzi−`.

Then the preceding formula extends for the action L of L on xρO[z] by linearity to

Lemma 4. In the above situation, one has

L = L+ L′∂z +
1
2L
′′∂2z + . . .+ 1

`!L
(`)∂`z + . . .+ 1

n!L
(n)∂nz .

We will call this decomposition the Taylor expansion of L on xρO[z].

Let us now turn to the actual proof of the normal form theorem with logarithms. The formula in Lemma 4

applies in particular to the initial form L0 of L at 0. The key step is then, taking as function space on which

L and L0 act the space F = xρO[z]<m, where m = mρ is again the multiplicity of the local exponent ρ of

L, the following

Claim. The image of L0 acting on F is xF ,

L0(F) = xF .

Proof. The inclusion L0(F) ⊂ xF is straightforward. Indeed, if i < m then i` = 0 for ` ≥ m ≥ i + 1.

Therefore, the formula of Lemma 3,

L0(x
ρzi) = xρ · [χ(ρ)zi + χ′(ρ)izi−1 + . . .+ 1

n!χ
(n)(ρ)inzi−n],

reduces to

L0(x
ρzi) = xρ · [χ(ρ)zi + χ′(ρ)izi−1 + . . .+ 1

(m−1)!χ
(m−1)(ρ)im−1zi−m+1].

This implies that L0(x
ρzi) = 0 for i < m, say L0(x

ρC[z]<m = 0. Thus L0(F) ⊂ xF .

For the converse inclusion L0(F) ⊃ xF we have to show that xρ+kzi ∈ L0(F) for all k ≥ 1 and all

0 ≤ i < m. This is immediate if i = 0: then

L0(x
ρ+k) = L0(x

ρ+k) = χ(ρ+ k)xρ+k

and χ(ρ+ k) 6= 0 since ρ is maximal modulo Z. So xρ+k ∈ L0(F) for all k ≥ 1. Let now i > 0. We apply

induction on i. By Lemma 4 we know that

L0(x
ρ+kzi) = L0(x

ρ+kzi) +

n∑
`=1

1

`!
L
(`)
0 ∂`z(x

ρ+kzi).

In terms of the derivatives of the indicial polynomial χ this reads as

L0(x
ρ+kzi) = χ(ρ+ k)xρ+kzi +

n∑
`=1

1

`!
χ(`)(ρ+ k)

1

`!
i` · xρ+kzi−`.

The first summand is non-zero as before, and the polynomial in z defined by the sum of the second summand

has degree < i, hence belongs by induction on i to L0(F). Therefore xρ+kzi ∈ L0(F) and the converse

inclusion L0(F) ⊃ xF is shown.

From this point on, the proof follows exactly the proof of the normal form theorem from part IV of the

notes. The only thing to remark is that, for the convergence proof, one uses the fact that F = xρO[z]<m is

a finite free O-module and so the Banach space argument applies again. 	
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